3.11 \(\int \frac{a+b x}{d+e x^3} \, dx\)

Optimal. Leaf size=161 \[ -\frac{\left (a-\frac{b \sqrt [3]{d}}{\sqrt [3]{e}}\right ) \log \left (d^{2/3}-\sqrt [3]{d} \sqrt [3]{e} x+e^{2/3} x^2\right )}{6 d^{2/3} \sqrt [3]{e}}-\frac{\left (b \sqrt [3]{d}-a \sqrt [3]{e}\right ) \log \left (\sqrt [3]{d}+\sqrt [3]{e} x\right )}{3 d^{2/3} e^{2/3}}-\frac{\left (a \sqrt [3]{e}+b \sqrt [3]{d}\right ) \tan ^{-1}\left (\frac{\sqrt [3]{d}-2 \sqrt [3]{e} x}{\sqrt{3} \sqrt [3]{d}}\right )}{\sqrt{3} d^{2/3} e^{2/3}} \]

[Out]

-(((b*d^(1/3) + a*e^(1/3))*ArcTan[(d^(1/3) - 2*e^(1/3)*x)/(Sqrt[3]*d^(1/3))])/(Sqrt[3]*d^(2/3)*e^(2/3))) - ((b
*d^(1/3) - a*e^(1/3))*Log[d^(1/3) + e^(1/3)*x])/(3*d^(2/3)*e^(2/3)) - ((a - (b*d^(1/3))/e^(1/3))*Log[d^(2/3) -
 d^(1/3)*e^(1/3)*x + e^(2/3)*x^2])/(6*d^(2/3)*e^(1/3))

________________________________________________________________________________________

Rubi [A]  time = 0.121466, antiderivative size = 161, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 15, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.4, Rules used = {1860, 31, 634, 617, 204, 628} \[ -\frac{\left (a-\frac{b \sqrt [3]{d}}{\sqrt [3]{e}}\right ) \log \left (d^{2/3}-\sqrt [3]{d} \sqrt [3]{e} x+e^{2/3} x^2\right )}{6 d^{2/3} \sqrt [3]{e}}-\frac{\left (b \sqrt [3]{d}-a \sqrt [3]{e}\right ) \log \left (\sqrt [3]{d}+\sqrt [3]{e} x\right )}{3 d^{2/3} e^{2/3}}-\frac{\left (a \sqrt [3]{e}+b \sqrt [3]{d}\right ) \tan ^{-1}\left (\frac{\sqrt [3]{d}-2 \sqrt [3]{e} x}{\sqrt{3} \sqrt [3]{d}}\right )}{\sqrt{3} d^{2/3} e^{2/3}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*x)/(d + e*x^3),x]

[Out]

-(((b*d^(1/3) + a*e^(1/3))*ArcTan[(d^(1/3) - 2*e^(1/3)*x)/(Sqrt[3]*d^(1/3))])/(Sqrt[3]*d^(2/3)*e^(2/3))) - ((b
*d^(1/3) - a*e^(1/3))*Log[d^(1/3) + e^(1/3)*x])/(3*d^(2/3)*e^(2/3)) - ((a - (b*d^(1/3))/e^(1/3))*Log[d^(2/3) -
 d^(1/3)*e^(1/3)*x + e^(2/3)*x^2])/(6*d^(2/3)*e^(1/3))

Rule 1860

Int[((A_) + (B_.)*(x_))/((a_) + (b_.)*(x_)^3), x_Symbol] :> With[{r = Numerator[Rt[a/b, 3]], s = Denominator[R
t[a/b, 3]]}, -Dist[(r*(B*r - A*s))/(3*a*s), Int[1/(r + s*x), x], x] + Dist[r/(3*a*s), Int[(r*(B*r + 2*A*s) + s
*(B*r - A*s)*x)/(r^2 - r*s*x + s^2*x^2), x], x]] /; FreeQ[{a, b, A, B}, x] && NeQ[a*B^3 - b*A^3, 0] && PosQ[a/
b]

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 634

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{a+b x}{d+e x^3} \, dx &=\frac{\left (a-\frac{b \sqrt [3]{d}}{\sqrt [3]{e}}\right ) \int \frac{1}{\sqrt [3]{d}+\sqrt [3]{e} x} \, dx}{3 d^{2/3}}+\frac{\int \frac{\sqrt [3]{d} \left (b \sqrt [3]{d}+2 a \sqrt [3]{e}\right )+\left (b \sqrt [3]{d}-a \sqrt [3]{e}\right ) \sqrt [3]{e} x}{d^{2/3}-\sqrt [3]{d} \sqrt [3]{e} x+e^{2/3} x^2} \, dx}{3 d^{2/3} \sqrt [3]{e}}\\ &=\frac{\left (a-\frac{b \sqrt [3]{d}}{\sqrt [3]{e}}\right ) \log \left (\sqrt [3]{d}+\sqrt [3]{e} x\right )}{3 d^{2/3} \sqrt [3]{e}}+\frac{1}{2} \left (\frac{a}{\sqrt [3]{d}}+\frac{b}{\sqrt [3]{e}}\right ) \int \frac{1}{d^{2/3}-\sqrt [3]{d} \sqrt [3]{e} x+e^{2/3} x^2} \, dx+\frac{\left (b \sqrt [3]{d}-a \sqrt [3]{e}\right ) \int \frac{-\sqrt [3]{d} \sqrt [3]{e}+2 e^{2/3} x}{d^{2/3}-\sqrt [3]{d} \sqrt [3]{e} x+e^{2/3} x^2} \, dx}{6 d^{2/3} e^{2/3}}\\ &=\frac{\left (a-\frac{b \sqrt [3]{d}}{\sqrt [3]{e}}\right ) \log \left (\sqrt [3]{d}+\sqrt [3]{e} x\right )}{3 d^{2/3} \sqrt [3]{e}}+\frac{\left (b \sqrt [3]{d}-a \sqrt [3]{e}\right ) \log \left (d^{2/3}-\sqrt [3]{d} \sqrt [3]{e} x+e^{2/3} x^2\right )}{6 d^{2/3} e^{2/3}}+\frac{\left (b \sqrt [3]{d}+a \sqrt [3]{e}\right ) \operatorname{Subst}\left (\int \frac{1}{-3-x^2} \, dx,x,1-\frac{2 \sqrt [3]{e} x}{\sqrt [3]{d}}\right )}{d^{2/3} e^{2/3}}\\ &=-\frac{\left (b \sqrt [3]{d}+a \sqrt [3]{e}\right ) \tan ^{-1}\left (\frac{\sqrt [3]{d}-2 \sqrt [3]{e} x}{\sqrt{3} \sqrt [3]{d}}\right )}{\sqrt{3} d^{2/3} e^{2/3}}+\frac{\left (a-\frac{b \sqrt [3]{d}}{\sqrt [3]{e}}\right ) \log \left (\sqrt [3]{d}+\sqrt [3]{e} x\right )}{3 d^{2/3} \sqrt [3]{e}}+\frac{\left (b \sqrt [3]{d}-a \sqrt [3]{e}\right ) \log \left (d^{2/3}-\sqrt [3]{d} \sqrt [3]{e} x+e^{2/3} x^2\right )}{6 d^{2/3} e^{2/3}}\\ \end{align*}

Mathematica [A]  time = 0.0579368, size = 125, normalized size = 0.78 \[ \frac{-\left (b \sqrt [3]{d}-a \sqrt [3]{e}\right ) \left (2 \log \left (\sqrt [3]{d}+\sqrt [3]{e} x\right )-\log \left (d^{2/3}-\sqrt [3]{d} \sqrt [3]{e} x+e^{2/3} x^2\right )\right )-2 \sqrt{3} \left (a \sqrt [3]{e}+b \sqrt [3]{d}\right ) \tan ^{-1}\left (\frac{1-\frac{2 \sqrt [3]{e} x}{\sqrt [3]{d}}}{\sqrt{3}}\right )}{6 d^{2/3} e^{2/3}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x)/(d + e*x^3),x]

[Out]

(-2*Sqrt[3]*(b*d^(1/3) + a*e^(1/3))*ArcTan[(1 - (2*e^(1/3)*x)/d^(1/3))/Sqrt[3]] - (b*d^(1/3) - a*e^(1/3))*(2*L
og[d^(1/3) + e^(1/3)*x] - Log[d^(2/3) - d^(1/3)*e^(1/3)*x + e^(2/3)*x^2]))/(6*d^(2/3)*e^(2/3))

________________________________________________________________________________________

Maple [A]  time = 0.048, size = 186, normalized size = 1.2 \begin{align*}{\frac{a}{3\,e}\ln \left ( x+\sqrt [3]{{\frac{d}{e}}} \right ) \left ({\frac{d}{e}} \right ) ^{-{\frac{2}{3}}}}-{\frac{a}{6\,e}\ln \left ({x}^{2}-\sqrt [3]{{\frac{d}{e}}}x+ \left ({\frac{d}{e}} \right ) ^{{\frac{2}{3}}} \right ) \left ({\frac{d}{e}} \right ) ^{-{\frac{2}{3}}}}+{\frac{a\sqrt{3}}{3\,e}\arctan \left ({\frac{\sqrt{3}}{3} \left ( 2\,{x{\frac{1}{\sqrt [3]{{\frac{d}{e}}}}}}-1 \right ) } \right ) \left ({\frac{d}{e}} \right ) ^{-{\frac{2}{3}}}}-{\frac{b}{3\,e}\ln \left ( x+\sqrt [3]{{\frac{d}{e}}} \right ){\frac{1}{\sqrt [3]{{\frac{d}{e}}}}}}+{\frac{b}{6\,e}\ln \left ({x}^{2}-\sqrt [3]{{\frac{d}{e}}}x+ \left ({\frac{d}{e}} \right ) ^{{\frac{2}{3}}} \right ){\frac{1}{\sqrt [3]{{\frac{d}{e}}}}}}+{\frac{b\sqrt{3}}{3\,e}\arctan \left ({\frac{\sqrt{3}}{3} \left ( 2\,{x{\frac{1}{\sqrt [3]{{\frac{d}{e}}}}}}-1 \right ) } \right ){\frac{1}{\sqrt [3]{{\frac{d}{e}}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x+a)/(e*x^3+d),x)

[Out]

1/3*a/e/(d/e)^(2/3)*ln(x+(d/e)^(1/3))-1/6*a/e/(d/e)^(2/3)*ln(x^2-(d/e)^(1/3)*x+(d/e)^(2/3))+1/3*a/e/(d/e)^(2/3
)*3^(1/2)*arctan(1/3*3^(1/2)*(2/(d/e)^(1/3)*x-1))-1/3*b/e/(d/e)^(1/3)*ln(x+(d/e)^(1/3))+1/6*b/e/(d/e)^(1/3)*ln
(x^2-(d/e)^(1/3)*x+(d/e)^(2/3))+1/3*b*3^(1/2)/e/(d/e)^(1/3)*arctan(1/3*3^(1/2)*(2/(d/e)^(1/3)*x-1))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)/(e*x^3+d),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [C]  time = 6.31883, size = 4590, normalized size = 28.51 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)/(e*x^3+d),x, algorithm="fricas")

[Out]

-1/6*((1/2)^(1/3)*(I*sqrt(3) + 1)*((b^3*d + a^3*e)/(d^2*e^2) - (b^3*d - a^3*e)/(d^2*e^2))^(1/3) - 2*(1/2)^(2/3
)*a*b*(-I*sqrt(3) + 1)/(d*e*((b^3*d + a^3*e)/(d^2*e^2) - (b^3*d - a^3*e)/(d^2*e^2))^(1/3)))*log(1/4*((1/2)^(1/
3)*(I*sqrt(3) + 1)*((b^3*d + a^3*e)/(d^2*e^2) - (b^3*d - a^3*e)/(d^2*e^2))^(1/3) - 2*(1/2)^(2/3)*a*b*(-I*sqrt(
3) + 1)/(d*e*((b^3*d + a^3*e)/(d^2*e^2) - (b^3*d - a^3*e)/(d^2*e^2))^(1/3)))^2*b*d^2*e - 1/2*((1/2)^(1/3)*(I*s
qrt(3) + 1)*((b^3*d + a^3*e)/(d^2*e^2) - (b^3*d - a^3*e)/(d^2*e^2))^(1/3) - 2*(1/2)^(2/3)*a*b*(-I*sqrt(3) + 1)
/(d*e*((b^3*d + a^3*e)/(d^2*e^2) - (b^3*d - a^3*e)/(d^2*e^2))^(1/3)))*a^2*d*e + 2*a*b^2*d + (b^3*d + a^3*e)*x)
 + 1/12*((1/2)^(1/3)*(I*sqrt(3) + 1)*((b^3*d + a^3*e)/(d^2*e^2) - (b^3*d - a^3*e)/(d^2*e^2))^(1/3) - 2*(1/2)^(
2/3)*a*b*(-I*sqrt(3) + 1)/(d*e*((b^3*d + a^3*e)/(d^2*e^2) - (b^3*d - a^3*e)/(d^2*e^2))^(1/3)) + 3*sqrt(1/3)*sq
rt(-(((1/2)^(1/3)*(I*sqrt(3) + 1)*((b^3*d + a^3*e)/(d^2*e^2) - (b^3*d - a^3*e)/(d^2*e^2))^(1/3) - 2*(1/2)^(2/3
)*a*b*(-I*sqrt(3) + 1)/(d*e*((b^3*d + a^3*e)/(d^2*e^2) - (b^3*d - a^3*e)/(d^2*e^2))^(1/3)))^2*d*e + 16*a*b)/(d
*e)))*log(-1/4*((1/2)^(1/3)*(I*sqrt(3) + 1)*((b^3*d + a^3*e)/(d^2*e^2) - (b^3*d - a^3*e)/(d^2*e^2))^(1/3) - 2*
(1/2)^(2/3)*a*b*(-I*sqrt(3) + 1)/(d*e*((b^3*d + a^3*e)/(d^2*e^2) - (b^3*d - a^3*e)/(d^2*e^2))^(1/3)))^2*b*d^2*
e + 1/2*((1/2)^(1/3)*(I*sqrt(3) + 1)*((b^3*d + a^3*e)/(d^2*e^2) - (b^3*d - a^3*e)/(d^2*e^2))^(1/3) - 2*(1/2)^(
2/3)*a*b*(-I*sqrt(3) + 1)/(d*e*((b^3*d + a^3*e)/(d^2*e^2) - (b^3*d - a^3*e)/(d^2*e^2))^(1/3)))*a^2*d*e - 2*a*b
^2*d + 2*(b^3*d + a^3*e)*x + 3/4*sqrt(1/3)*(((1/2)^(1/3)*(I*sqrt(3) + 1)*((b^3*d + a^3*e)/(d^2*e^2) - (b^3*d -
 a^3*e)/(d^2*e^2))^(1/3) - 2*(1/2)^(2/3)*a*b*(-I*sqrt(3) + 1)/(d*e*((b^3*d + a^3*e)/(d^2*e^2) - (b^3*d - a^3*e
)/(d^2*e^2))^(1/3)))*b*d^2*e + 2*a^2*d*e)*sqrt(-(((1/2)^(1/3)*(I*sqrt(3) + 1)*((b^3*d + a^3*e)/(d^2*e^2) - (b^
3*d - a^3*e)/(d^2*e^2))^(1/3) - 2*(1/2)^(2/3)*a*b*(-I*sqrt(3) + 1)/(d*e*((b^3*d + a^3*e)/(d^2*e^2) - (b^3*d -
a^3*e)/(d^2*e^2))^(1/3)))^2*d*e + 16*a*b)/(d*e))) + 1/12*((1/2)^(1/3)*(I*sqrt(3) + 1)*((b^3*d + a^3*e)/(d^2*e^
2) - (b^3*d - a^3*e)/(d^2*e^2))^(1/3) - 2*(1/2)^(2/3)*a*b*(-I*sqrt(3) + 1)/(d*e*((b^3*d + a^3*e)/(d^2*e^2) - (
b^3*d - a^3*e)/(d^2*e^2))^(1/3)) - 3*sqrt(1/3)*sqrt(-(((1/2)^(1/3)*(I*sqrt(3) + 1)*((b^3*d + a^3*e)/(d^2*e^2)
- (b^3*d - a^3*e)/(d^2*e^2))^(1/3) - 2*(1/2)^(2/3)*a*b*(-I*sqrt(3) + 1)/(d*e*((b^3*d + a^3*e)/(d^2*e^2) - (b^3
*d - a^3*e)/(d^2*e^2))^(1/3)))^2*d*e + 16*a*b)/(d*e)))*log(-1/4*((1/2)^(1/3)*(I*sqrt(3) + 1)*((b^3*d + a^3*e)/
(d^2*e^2) - (b^3*d - a^3*e)/(d^2*e^2))^(1/3) - 2*(1/2)^(2/3)*a*b*(-I*sqrt(3) + 1)/(d*e*((b^3*d + a^3*e)/(d^2*e
^2) - (b^3*d - a^3*e)/(d^2*e^2))^(1/3)))^2*b*d^2*e + 1/2*((1/2)^(1/3)*(I*sqrt(3) + 1)*((b^3*d + a^3*e)/(d^2*e^
2) - (b^3*d - a^3*e)/(d^2*e^2))^(1/3) - 2*(1/2)^(2/3)*a*b*(-I*sqrt(3) + 1)/(d*e*((b^3*d + a^3*e)/(d^2*e^2) - (
b^3*d - a^3*e)/(d^2*e^2))^(1/3)))*a^2*d*e - 2*a*b^2*d + 2*(b^3*d + a^3*e)*x - 3/4*sqrt(1/3)*(((1/2)^(1/3)*(I*s
qrt(3) + 1)*((b^3*d + a^3*e)/(d^2*e^2) - (b^3*d - a^3*e)/(d^2*e^2))^(1/3) - 2*(1/2)^(2/3)*a*b*(-I*sqrt(3) + 1)
/(d*e*((b^3*d + a^3*e)/(d^2*e^2) - (b^3*d - a^3*e)/(d^2*e^2))^(1/3)))*b*d^2*e + 2*a^2*d*e)*sqrt(-(((1/2)^(1/3)
*(I*sqrt(3) + 1)*((b^3*d + a^3*e)/(d^2*e^2) - (b^3*d - a^3*e)/(d^2*e^2))^(1/3) - 2*(1/2)^(2/3)*a*b*(-I*sqrt(3)
 + 1)/(d*e*((b^3*d + a^3*e)/(d^2*e^2) - (b^3*d - a^3*e)/(d^2*e^2))^(1/3)))^2*d*e + 16*a*b)/(d*e)))

________________________________________________________________________________________

Sympy [A]  time = 1.24309, size = 76, normalized size = 0.47 \begin{align*} \operatorname{RootSum}{\left (27 t^{3} d^{2} e^{2} + 9 t a b d e - a^{3} e + b^{3} d, \left ( t \mapsto t \log{\left (x + \frac{9 t^{2} b d^{2} e + 3 t a^{2} d e + 2 a b^{2} d}{a^{3} e + b^{3} d} \right )} \right )\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)/(e*x**3+d),x)

[Out]

RootSum(27*_t**3*d**2*e**2 + 9*_t*a*b*d*e - a**3*e + b**3*d, Lambda(_t, _t*log(x + (9*_t**2*b*d**2*e + 3*_t*a*
*2*d*e + 2*a*b**2*d)/(a**3*e + b**3*d))))

________________________________________________________________________________________

Giac [A]  time = 1.11335, size = 197, normalized size = 1.22 \begin{align*} \frac{\sqrt{3}{\left (\left (-d e^{2}\right )^{\frac{1}{3}} a e - \left (-d e^{2}\right )^{\frac{2}{3}} b\right )} \arctan \left (\frac{\sqrt{3}{\left (2 \, x + \left (-d e^{\left (-1\right )}\right )^{\frac{1}{3}}\right )}}{3 \, \left (-d e^{\left (-1\right )}\right )^{\frac{1}{3}}}\right ) e^{\left (-2\right )}}{3 \, d} - \frac{\left (-d e^{\left (-1\right )}\right )^{\frac{1}{3}}{\left (\left (-d e^{\left (-1\right )}\right )^{\frac{1}{3}} b + a\right )} \log \left ({\left | x - \left (-d e^{\left (-1\right )}\right )^{\frac{1}{3}} \right |}\right )}{3 \, d} + \frac{{\left (\left (-d e^{2}\right )^{\frac{2}{3}} b d e^{2} + \left (-d e^{2}\right )^{\frac{1}{3}} a d e^{3}\right )} e^{\left (-4\right )} \log \left (x^{2} + \left (-d e^{\left (-1\right )}\right )^{\frac{1}{3}} x + \left (-d e^{\left (-1\right )}\right )^{\frac{2}{3}}\right )}{6 \, d^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)/(e*x^3+d),x, algorithm="giac")

[Out]

1/3*sqrt(3)*((-d*e^2)^(1/3)*a*e - (-d*e^2)^(2/3)*b)*arctan(1/3*sqrt(3)*(2*x + (-d*e^(-1))^(1/3))/(-d*e^(-1))^(
1/3))*e^(-2)/d - 1/3*(-d*e^(-1))^(1/3)*((-d*e^(-1))^(1/3)*b + a)*log(abs(x - (-d*e^(-1))^(1/3)))/d + 1/6*((-d*
e^2)^(2/3)*b*d*e^2 + (-d*e^2)^(1/3)*a*d*e^3)*e^(-4)*log(x^2 + (-d*e^(-1))^(1/3)*x + (-d*e^(-1))^(2/3))/d^2